Epigenetic memory in response to environmental stressors.
نویسندگان
چکیده
Exposure to environmental stressors, toxicants, and nutrient deficiencies can affect DNA in several ways. Some exposures cause damage and alter the structure of DNA, but there is increasing evidence that the same or other environmental exposures, including those that occur during fetal development in utero, can cause epigenetic effects that modulate DNA function and gene expression. Some epigenetic changes to DNA that affect gene transcription are at least partially reversible (i.e., they can be enzymatically reversed after cessation of exposure to environmental agents), but some epigenetic modifications seem to persist, even for decades. To explain the effects of early life experiences (such as famine and exposures to other stressors) on the long-term persistence of specific patterns of epigenetic modifications, such as DNA methylation, we propose an analogy with immune memory. We propose that an epigenetic memory can be established and maintained in self-renewing stem cell compartments. We suggest that the observations on early life effects on adult diseases and the persistence of methylation changes in smokers support our hypothesis, for which a mechanistic basis, however, needs to be further clarified. We outline a new model based on methylation changes. Although these changes seem to be mainly adaptive, they are also implicated in the pathogenesis and onset of diseases, depending on individual genotypic background and types of subsequent exposures. Elucidating the relationships between the adaptive and maladaptive consequences of the epigenetic modifications that result from complex environmental exposures is a major challenge for current and future research in epigenetics.-Vineis, P., Chatziioannou, A., Cunliffe, V. T., Flanagan, J. M., Hanson, M., Kirsch-Volders, M., Kyrtopoulos, S. Epigenetic memory in response to environmental stressors.
منابع مشابه
Environmental stressors and the epigenome.
Epigenetic modification and transgenerational transfer of phenotype at the individual or population level, particularly in response to environmental change, is at the forefront of biological investigation. The plasticity of this process allows an organism to respond to changes in environmental conditions, potentially conferring a survival advantage. In this review, we discuss epigenetic transge...
متن کاملEpigenetics and cytoprotection with heat acclimation.
Studying "phenotypic plasticity" involves comparison of traits expressed in response to environmental fluctuations and aims to understand tolerance and survival in new settings. Reversible phenotypic changes that enable individuals to match their phenotype to environmental demands throughout life can be artificially induced, i.e., acclimation or occur naturally, i.e., acclimatization. The onset...
متن کاملDevelopmental programming and epigenetics.
The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli that result in modified gene expression patterns and phenotypes later in life, are a topic of considerable interest. This article focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, positions, and functions...
متن کاملStress adaptation and the resilience of youth: fact or fiction?
The young are resilient! This age-old adage refers to the ability of the young to adapt to changing stress in the environment. The origin of these stressors can be physical (pollution, nutrient status, infections) or psychological (trauma, parenting, home environment). Resilience is the ability to adapt to a changing environment, and this adaptive stress response (also known as allostasis) is c...
متن کاملMitochondria, Energetics, Epigenetics, and Cellular Responses to Stress
BACKGROUND Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 31 6 شماره
صفحات -
تاریخ انتشار 2017